

E1.1. Page 1 / 34

Mobile Energy Efficiency Services

Co-promoted Project ID: CENTRO-01-0247-FEDER-047256

E1.1 . Report on basic knowledge specification and requirements for each

project component

Authors: R&D Teams from , , and

Version: 1.0 (September 2022)

E1.1. Page 2 / 34

INDEX

1 Introduction ... 4

1.1 Motivation .. 4

1.2 Objectives ... 4

1.3 Main contributions ... 5

2 Description of Tasks ... 6

3 Research on energy efficiency analysis of mobile applications in centralised and

decentralised Cloud architectures ... 9

3.1 Research ... 9

3.1.1 Power Consumption Analysis, Measurement, Management, and Issues: A State-of-the-

Art Review of Smartphone Battery and Energy Usage .. 9

3.1.2 Google Play Apps ERM: (Energy Rating Model) Multi-Criteria Evaluation Model to

Generate Tentative Energy Ratings for Google Play Store Apps ... 11

3.2 Existing Energy Profilers ... 11

3.2.1 Modelling, Profiling, and Debugging the Energy Consumption of Mobile Devices 11

3.2.2 A Review on mobile application energy profiling: Taxonomy, state-of-the-art, and open

research issues ... 13

3.2.3 GreenScaler: training software energy models with automatic test generation 14

3.2.4 Software-Based Energy Profiling of Android Apps: Simple, Efficient and Reliable? 16

3.2.5 EMaaS: Energy Measurements as a Service for Mobile Applications 16

3.2.6 PowDroid: Energy Profiling of Android Applications .. 18

3.2.7 ReviewViz: Assisting Developers Perform Empirical Study on Energy Consumption

Related Reviews for Mobile Applications .. 19

3.3 Conclusion ... 20

4 Requirements of the data analysis, acquisition, and processing system 22

4.1 Requirements Elicitation ... 22

4.2 Functional Requirements (FR) .. 22

4.2.1 FR01 - Provide the dispatcher with a way to invoke the energy certification service and

obtain the result of the certifications carried out; .. 22

4.2.2 FR02 - Allow adding and removing certification techniques; ... 22

4.2.3 FR03 - Configure the output format and select the algorithm responsible for

certification; ... 22

4.2.4 FR04 - Run functional assessment and results in correction tests; 22

4.2.5 FR05 - Allow parameterization of algorithms; .. 22

E1.1. Page 3 / 34

4.2.6 FR06 - Allow the Judge to obtain information about the certification; 22

4.2.7 FR07 - Delete previous results of energy assessments; .. 22

4.2.8 FR08 - Activate and deactivate the energy evaluation; .. 22

4.2.9 FR09 - Suggest improvements in the application code to allow improving the

performance of energy consumption; ... 22

4.2.10 FR10 - Search and obtain information about certifications already carried out. 22

4.3 Business Objective .. 22

4.4 Technical Restrictions (TR) .. 23

4.4.1 TR01 - Be deployable with resources to containers in cloud environments. 23

4.4.2 TR02 - Snap to the current pipeline. ... 23

4.4.3 TR03 - Interact through web services with the components: dispatcher and Judge...... 23

4.5 Quality Attributes (QA) ... 23

4.5.1 QA01 - When the system receives a new application, check if the apk has the

requirements for analysing energy consumption. .. 23

4.5.2 QA02 - Allow deploying or updating without downtime. ... 23

4.5.3 QA03 - Dispatcher receive apk. When a new application is loaded in the app store, the

apk and application information are passed to the energy analysis tool. 23

4.5.4 QA04 - Analyse apk energy consumption during the pipeline without interfering with

critical pipeline flow... 23

4.5.5 QA05 - Prevent unauthenticated access to the system. ... 23

4.5.6 QA06 - The data considered for energy certifications must be saved and later made

available. .. 23

4.5.7 QA07 - Availability? ... 23

4.5.8 QA08 - Recovery in case of error? ... 23

4.5.9 QA09 - Duration/historical amount to keep? ... 23

4.5.10 QA10 - Performance? .. 23

5 Requirements for machine learning and profiling mechanisms for app energy

consumption patterns, and recommendation systems for stakeholders 24

6 Requirements for decision support and management interface, and recommendation

channels ... 34

E1.1. Page 4 / 34

1 Introduction

This section contains a brief introduction to the Greenstamp project, with its motivation and

objectives. At the end of the section, one may find the description and objectives of the task being

studied in this document. This general introduction aims to give the context of the project to new

team members who participate in only one task.

The rest of the document contains the necessary sections for the research and development of the

task being addressed.

1.1 Motivation

The importance that mobile devices have in our lives is such that it is difficult to imagine our daily

activities without their use. The use of smartphones, tablets and, more recently, wearables such as

smartwatches, has changed and simplified not only the way we communicate, but also the way we

have fun, individually and collectively, or the way we work and do business. In fact, the number and

scope of mobile apps seem limitless, but users still have increasing expectations about them. The

distribution of such applications is highly facilitated by digital markets, which democratise the

opportunity to market software to mobile devices. In 2017, the number of mobile applications

installed was 178 billion, a figure estimated to grow to 258 billion in 2022.

While much of the app market is targeted at mobile devices, whose autonomy depends on the limited

battery life, the fact is that today's markets do not provide any indication of the energy efficiency,

absolute or relative, of the applications they offer. With this gap in mind, in the GreenStamp project

we propose to investigate and develop innovative mechanisms for analysing and cataloguing the

energy efficiency of mobile applications integrated into app store processes. Pedagogical

recommendation systems for developers will also be studied, on how to improve the efficiency of

their applications, and for users, of energy-efficient applications aligned with their profile. The

objective is to reduce at least 20% of the energy consumed by applications that follow the technical

recommendations proposed and, inherently, of the mobile devices where they are installed, thus

contributing to a significant savings of resources consumed in the mobile market, particularly and

immediately by the large user base of the company promoting this project (250 million unique users

active in 2019).

1.2 Objectives

The GreenStamp project aims to investigate and develop techniques and technologies capable of

analysing, cataloguing, and informing about the energy efficiency of mobile applications and how to

optimise it, thus reducing the energy consumption of the mobile market. This goal is realised in direct

impacts on the wide range of citizens who are consumers of apps, mobile application companies and

app stores.

As for app consumers, the impact will be first and foremost on your satisfaction. This will come from

the certainty that you can have energy-efficient applications that optimise your device's resources,

rather than having applications that, in some cases you're usually unaware of at first, drain your

E1.1. Page 5 / 34

mobile device's limited energy resources with excessive and unnecessary battery consumption. This

certainty will be achieved by providing information on the energy profile of applications at the time

of their choice and installation, and through a system of recommendations to be investigated. Such

knowledge will allow consumers to opt for energy-efficient solutions, as is currently the case in other

markets (home appliances, automobiles, real estate, and others), thereby optimising the energy

performance of their device and increasing the autonomy time of the device. Thus, a user who chooses

efficient applications, will charge your device less often, will have a lower cost in your energy bill and

reduce the risk of developing nomophobia, with the certainty that the energy consumption of your

applications is great.1

1.3 Main contributions

To achieve the strategic objective and impacts mentioned, this project aims to research and develop

highly innovative techniques and technologies, unparalleled in the market. They are translated into

the following technical-scientific objectives:

● Investigate and conceptualise new systems for the acquisition, processing and analysis of data

related to the energy efficiency of mobile applications;

● Investigate and conceptualise innovative machine learning mechanisms and cataloguing

energy consumption patterns of mobile applications based on static and dynamic data;

● Investigate and conceptualise ways to information to users about the energy efficiency of

apps, and relevant recommendations related to this factor;

● Investigate and conceptualise models and mechanisms of technical and action-oriented

recommendation to mobile application promoters, on how to optimise this parameter in their

products, in an integrated way in their practice;

● Investigate and conceptualise a new interface to support decision and system management.

1 https://www.infopedia.pt/dicionarios/lingua-portuguesa/nomofobia

https://www.infopedia.pt/dicionarios/lingua-portuguesa/nomofobia

E1.1. Page 6 / 34

2 Description of Tasks

T1.1: Research on energy efficiency analysis of mobile applications in centralised and decentralised

Cloud architectures

Leader: UBI; Participation: UC and CMS; Output: E1.1

To support and justify technological and scientific choices as well as to motivate innovation in the

proposed solutions, we will lead a thorough and exhaustive analysis to the state of the art over 1) the

techniques of evaluation (of efficiency) energy; 2) the computer support platforms for such

evaluations; 3) a classification of such mechanisms (automatic, semi-automatic, with or without

preparation/prior instrumentation of the mobile code by analysing, on source code, on executable

code, etc.).

A particular emphasis will be placed on architectural solutions and their impact on the potentiation of

such analyses. If a Cloud architecture is consensual, many alternatives within this technological

context are possible: how to break down the computing, a file, a data collection? What will be the

impact? Centralised? Decentralised? It will be relevant to establish how these issues impact the state

of the art. Aspects such as availability, resilience, confidentiality, impact on the

personalization/fairness of the analysis (etc.) will be studied.

The whole study will deal particularly with the survey of knowledge in the technological ecosystem of

app stores, according to the solution that was specified, or, due to the dissolving of innovation, in

other systems where energy efficiency analysis is performed. An exhaustive knowledge base will be

created on app energy efficiency analysis, using dynamic or static analysis, in centralised Cloud

architectures (centralised processing), decentralised architectures, users' or developers' devices, and

hybrids. This work will make it possible to advance the following tasks in an informed manner

regarding the existing technical-scientific knowledge.

The scientific skills of UBI team members and employees, in particular the study of centralised vs.

decentralised models, lead to the choice of leadership in this task.

T1.2 - Requirements of the data analysis, acquisition, and processing system

Leader: UC; Participation: CMS; Output: E1.1.

The objective of this task is to identify functional requirements, technical constraints, quality

attributes and business objectives that influence the architecture, development, validation,

deployment and maintenance of the system of analysis, acquisition and processing of data. This

system is anticipated to consist of a developers-side static analysis component, a user-side dynamic

analysis component, and a centralised orchestrator component on the app store side. To achieve this

goal, the following actions will be carried out:

● Requirements’ elicitation: it will be carried out through interviews, by the development team
to all stakeholders of the project and by the analysis of the state of the art and current
practices in this field. The promoters should promote workshops, with the participation of

E1.1. Page 7 / 34

stakeholders, dedicated to elicitation, analysis and validation of requirements and quality
attributes.

● Requirements’ analysis: trade-offs, or conflicts, will be identified between the identified

requirements; user stories will be developed to document the identified requirements, as well
as quality attribute scenarios; metrics to develop and validate the system will also be
identified.

● Documentation: After the previous step, the identified requirements and quality attributes
will be recorded and specified in a document that will contain all requirements relevant to the
software architecture.

● Validation: The document will be validated by stakeholders.

● Management: Throughout the implementation, this being a research project, it is expected
that changes to the requirements will arise and that there will be unidentified restrictions at
the outset, both situations may result in requests for changes to the requirements and quality
attributes.

The results of this task will be used to formulate in an articulated way the technical-scientific roadmap

in T1.5 and will feed the beginning of the research task that will seek to meet the requirements raised

here in A2.

UC leads the task based on the scientific skills of its team, and in particular its experience in

requirements gathering other systems currently in production in the industrial context.

T1.3 - Requirements of machine learning and profiling mechanisms of application energy

consumption patterns, and recommendation systems for stakeholders

Leader: UBI; Participation: CMS; Output: E1.1.

This task focuses on the mechanisms of machine learning and profiling of patterns of energy

consumption of apps, and from recommendation systems to stakeholders. As in the previous task, the

objective of this task is also to identify functional requirements, technical constraints, quality

attributes and business objectives that have influence on architecture, development, validation,

deployment and maintenance of learning, cataloguing and recommendation mechanisms.

The success of this goal will be supported by the elicitation and analysis of requirements, preparation

and validation of the documentation, and a dynamic management that reacts to any necessary change

in the face of changes in requirements and other restrictions and problems that may occur.

This task will feed the development to be carried out in activity A3, and UBI is the leader of either this

task or the said activity.

T1.4 - Requirements for decision support interface and management, and recommendation

channels

Leader: CMS; Participation: UC; Output: E1.1.

E1.1. Page 8 / 34

This task will unite the knowledge generated in the T1.1 task to implement participatory design with

users similar to end users, to meet the requirements of the decision support interface and

management, and the channels of recommendations to users and developers regarding the energy

efficiency of apps. to define the interface-specific initial requirements. On the other hand, they will

be considered members of the team that develops the application distribution system to better

understand the requirements of recommendation channels to mobile users and developers. If it is

necessary, end users of the app store, users and developers of apps will also be used. from various

geographical points that collaborate with the company informing the needs and characteristics of

users of various geographies. This strategy of involvement of the main stakeholders from the initial

moments will make them feel co-authors of the innovative technology that comes from, which will

promote their acceptance at the end of the project.

In conjunction with tasks T1.2 and T1.3, the requirements to be raised in this task are related to three

distinct interfaces. On the one hand, it is intended to adjust and detail the solution proposed in this

application in terms of the interface of decision support and management of the system. On the other

hand, it is intended to define the requirements in terms of recommendations (and recommendation

formats) that application developers value in terms of optimising the energy efficiency of their

applications. The third strand concerns recommendations to mobile app consumers, and their

requirements in terms of what is valued and useful in terms of app energy efficiency on consumer

devices.

The stakeholders consulted here will be again in each phase of evaluation of the solution (activity A6),

informing R&D with the real needs of the market where the results will apply throughout the project.

The results of this task will inform and launch the a4 activity research roadmap. Because this is a task

that will lead to an app store management platform, and because it has the technical resources that

by its experience are appropriate for the development of the table, Caixa Mágica will lead this task.

E1.1. Page 9 / 34

3 Research on energy efficiency analysis of mobile applications in
centralised and decentralised Cloud architectures

This section presents the current state of technology regarding green computing applied to mobile

devices. The research available is presented and discussed in three different sections, each focusing

on a key aspect of this thesis that will later prove itself useful in the development of the solution in

which the thesis is focused on.

The Research section presents articles that provide insight into energy consumption analysis and its

importance for the user.

The section Existing Energy Profilers will present the energy profilers for mobile devices which are

software and hardware tools available to attain predictive models for the energy consumption of

mobile devices and an extensive look into which ones may suit the intended use for this project.

Lastly, the Machine Learning Algorithms will present insights into the available models to solve the

problem that is the main focus of this research.

All research presented in this section was developed in the last five years with the exception of two

articles presented in the Existing Energy Profilers, were conducted seven years ago however they

contain an extensive list of profilers and in depth analysis of said profilers results that was deemed

important for a better understanding of this subject matter.

3.1 Research

3.1.1 Power Consumption Analysis, Measurement, Management, and Issues: A State-of-
the-Art Review of Smartphone Battery and Energy Usage

The article [9] provides an in-depth look at how smartphones and their batteries function and how to

measure and reduce the energy consumption through the use of varied techniques. It also analyses

the available research into the development of smartphone batteries and hazards associated with

these, providing some solutions on how to mitigate them.

E1.1. Page 10 / 34

Despite the main focus of the article being the smartphone batteries, its contributions to this thesis

come mainly from its comprehensive study into the energy consumption of the various components

of the smartphone from which the author attains a surface understanding of the energy consumption

distribution percentiles between them and of the available profilers and models for measurement and

diagnosis of energy consumption providing further information on the development of these software

tools.

E1.1. Page 11 / 34

3.1.2 Google Play Apps ERM: (Energy Rating Model) Multi-Criteria Evaluation Model to
Generate Tentative Energy Ratings for Google Play Store Apps

The thesis [2] was conducted with the intent to develop a mixed strategy between user side preventive

power-saving plans with conventional detective strategies and thus come up with an adequate rating

system for the apps present in the Google Play Store. Through an in depth look at the current state of

green computing, user experience and the information made available by Google in their app store,

more specifically the list of permissions pertaining to the app, the author was able to develop a energy

rating scheme with the use of stars to represent the quality in terms of energy usage of the application.

This thesis utilises Power Tutor in order to develop an energy model of the Samsung I9500 so as to

then apply the estimated consumption of the varied components and then associate them to their

respective permissions as presented in table below.

From the excerpt of this table, we can see that the authors of the study managed to produce a

relatively, although simplistic, rating for the energy consumption of each permission through the

mobile components they utilise. All of this was possible due to the correlation between the data

obtained from Power Tutor and human analysis.

Given the subject matter of this paper, this study is of high relevance, allowing the author to attain an

overview of the recent state of green computing with focus on the mobile market and to gather

valuable insights on how to approach the problem meant to be solved by this thesis.

3.2 Existing Energy Profilers

3.2.1 Modelling, Profiling, and Debugging the Energy Consumption of Mobile Devices

The focus of the article [8] lies in an extensive explanation on how to develop an energy profiler and

the analysis of the literature related to several energy profilers with the intent of comparing their

performance and ease of use. The authors divide the profilers into three different categories, the

categories and respective profilers are the following:

● On-Device profiler with on Device model:

○ Nokia Energy Profiler;

○ Trepn Profiler;

○ Power Booter;

○ Se-same;

○ DevScope;

○ AppScope;

E1.1. Page 12 / 34

○ V-edge.

● On-Device Profiler with off-Device model:

○ Android Power Profiler;

○ Power Tutor;

○ Power Prof.

● Off-device in Laboratory:

○ PowerScope;

○ Joule Watcher;

○ Fine-grained Profiling with Eprof;

○ Banerjee et al;

○ Shye et al.

The main contribution of this article is the pooling of available profilers, their respective accuracy

values and comparison of components between them allowing for an easier choice of which profiler

to apply to this thesis. From the result of this survey it is possible to determine that the Trepn profiler

has the best accuracy and analyses the consumption of most components that exist in smartphones,

however these accuracy values are those reported by the developers of the various profilers and were

not tested by the authors of this article and thus, the values may be biassed towards the applications

that were used by the developers to test the profilers.

E1.1. Page 13 / 34

3.2.2 A Review on mobile application energy profiling: Taxonomy, state-of-the-art, and
open research issues

The main intent of this study [1] is the development of a concise taxonomy so as to facilitate the

understanding and separation of the varied existing methods available for energy profiling of mobile

devices, this is then substantiated through an analysis of different methods that suit the two main

categories the authors theorised, these categories and profilers are the following:

● Software based:

○ Power-prof;

○ Power Booter;

○ Se-same;

○ Hybrid-feedback;

○ SEMO;

○ Elens;

○ ARO;

○ Wattson;

○ Eprof;

○ P-top.

● Hardware based:

○ DuT;

○ Netw-trace;

○ Power Memo;

○ PowerScope;

○ Network;

○ Web-browser;

○ Multi-core CPU.

For the purposes of this article, the authors focused mainly on the analysis of the software energy

profilers as seen in the table below.

E1.1. Page 14 / 34

This article contributes to a deeper and concise knowledge on the available energy profilers and their

capabilities. Its contribution for this paper lies on widening the pool of available profilers.

3.2.3 GreenScaler: training software energy models with automatic test generation

GreenScaler [4] is a robust energy model developed with Android developers in mind so as to allow

them to estimate the energetic consumption of the applications that they develop. This energy model

software makes use of random test generation and a CPU usage focused heuristic in order to select

which test cases are best, through this, GreenScaler is able to produce relatively accurate energy

models for an application with an upper error bound of 10% when using randomly generated test

cases and an even lower error percentage when applied to manually written tests. It is also able to

detect energy regression within different versions of an app as long as it's a relevant difference.

This energy model software is able to achieve its purpose, through the use of GreenMonkey, an

adaptation of Android Monkey the UI/Application exercisers. This adaptation was developed since the

original was somewhat limited, mainly because it didn't allow for the user to define an event

distribution and it included irrelevant events as well that aren't related to the app itself. Later in the

research the authors compared their version's performance to the original's and found that their

version produced much better results when the CPU-utilisation heuristics were applied than the

original and thus opted with GreenMonkey for automatic test generation. Below we can see a simple

image depicting the process flow of GreenScaler.

E1.1. Page 15 / 34

The authors evaluation of both resource usage heuristics, these being a CPU-utilisation heuristic and

an energy estimation heuristic, was done by using the same feature table but using the different

datasets obtained from implementing the different heuristics to the test selection process. The leave-

one-out method was applied so as to test the accuracy of the model, the Anderson-darling normality

test was also utilised and it determined that both error distributions are not normally distributed and

thus the Kruskal-Wallis test was used which yielded that the error distributions from the models

obtained out of the different heuristics were statistically different.

Due to this, the Wilcoxon-rank-sum test was applied to attain the 99% confidence interval of mean

percent error in joules as well as the Cliff's delta to measure the effect size between them.

After the statistical analysis was complete, the chosen model for GreenScaler was the Model based

off of CPU-utilisation, due to it having a better upper error bound and a difference of 3% in the mean

error for the 5% worst estimations. The CPU heuristics model also benefits from its simplicity since it

only requires to capture the CPU jiffy (period of an alternating current power cycle) information

whereas the energy model heuristic requires far more data and to trace every single system call by an

app.

The research detailed in this report is highly relevant due to important insights gathered from it that

will benefit the projects future development, e.g. when implementing a test selection, a simple CPU-

utilisation heuristic seemed to be the best performing one, being preferred over the use of a more

complex energy estimation or a code coverage heuristic. In terms of training the model it was found

that with 400 different apps in the training set, it's able to reach the upper error-bound of 10%,

however the error rate decay slows down considerably after using 300 apps in the training set as seen

in the graphic below.

E1.1. Page 16 / 34

3.2.4 Software-Based Energy Profiling of Android Apps: Simple, Efficient and Reliable?

PETrA [6] or Power Estimation Tool for Android is a software-based tool developed with the intent of

understanding if it was possible to build such a tool and attain accurate energy consumption

measurements without the use of hardware-based tools that are expensive to acquire but provide the

most accurate measurements.

This tool functions in the following manner, firstly it starts by handling app preprocessing in which

PETrA is given an app, it's directory and is then tasked with installing and preparing the app for

analysis, then it proceeds to compute the energy profile of the app by receiving a test case, this test

can be a manually written one or one generated automatically.

After the test is finished then, through the use of Project Volta's Android tools, PETrA is capable of

creating a power profile of the app and from it, together with the use of certain formulas, pinpoint

how much energy the app consumes when performing certain tasks, finally the tool generates an

output, a csv file with the energy estimations for each of the method calls the app executes.

3.2.5 EMaaS: Energy Measurements as a Service for Mobile Applications

The paper [5] details the development of a peer-to-peer cloud based system with the intent to supply

mobile developers with a platform in which they can have access to various energy models and

hardware analysis methods so they can assess the energy consumption levels of the applications they

are developing.

E1.1. Page 17 / 34

This is an incredibly useful feature since it allows developers to analyse the energy consumption of

their application without having to acquire different sets of tools and knowledge which they may not

have and may be expensive to acquire by themselves.

In order to accomplish this feat, the authors developed the platform with three different types of

users in mind, being these the Developers, users with the intent of using the platform for the

assessment of the energy consumption of the various apps they develop, the Providers, users who

supply the network with devices which will allow the applications from developers to run on said

devices in order to estimate the energy consumption resorting to adequate energy models to achieve

this end, and finally the Super-Providers, who will provide hardware based energy measurements in

order to create a trust value for comparison with the energy model acquired measurements.

Despite the three different types of user it is possible for any one user to meet requirements for all

three types and fulfil all tasks simultaneously.

The process of measuring said consumption occurs has follows:

1. Developer requests assessment for his application by providing an APK to the platform along

with an instrumentation build and test cases for said app;

2. APK is sent to a Provider and a Super-Provider, for this to be properly processed it is required

that both these parties have the same device model as the Developer;

3. Provider returns energy consumption measurements based off of a energy model

adequately arranged for the device in question whilst the Super-Provider will provide

E1.1. Page 18 / 34

measurements based off of readings from the monitoring of hardware readings with the use

of proper equipment for the task;

4. Results are returned to the Developer and the process is concluded.

This process sustains itself on two major implemented mechanisms to assess which results can be

delivered to the Developer so he can attain accurate data, these are the Reliability Consultant, the

Energy Model available, the Hardware-based power Monitor is also crucial however it's only used has

a trust base system for the previous two instead of being an implemented algorithm.

When a Developer requests an energy measurement this request will first go through the reliability

consultant in order to determine if the available energy model for said device model is enough to

accurately determine the measurement on its own. It does this through applying the values obtained

from both the Provider and the Super-Provider in a mathematical formula that will evaluate said

energy model's reliability, the closer to zero the result is the more reliable the model will be. In case

the reliability of the model exceeds a certain threshold above or below zero, it will be considered as

unreliable for the respective case and the values obtained from the Super-Provider will be returned

to the developer as well as they will also be used to update the existing energy model and the

reliability consultant so that these are better prepared for future requests, otherwise the energy

model obtained value is used since it's assessed to be reliable.

3.2.6 PowDroid: Energy Profiling of Android Applications

Powdroid [3] is a fusion between utilisation-based and event-based energy profiler that checks the

battery status at the moment of app initialization and compares it with its final value at the end of its

execution. This is accomplished through the use of a Wi-Fi connection and a command-line tool with

the phone and four specific tools, these are Batterystats, a tool in the Android framework that collects

raw data from the battery, Bugreport, also from the Android framework and produces a zip file

containing a report of the app's usage, Battery Historian, a tool from Google used to create an easy to

read web-based visualisation of the report provided by Bugreport and lastly, the authors, run a few

scripts in order to split, process and unite the metrics in order to return a CSV file containing a list of

all events and corresponding usage data.

This profiler was tested with three different types of apps, these were web browsers, camera and

weather applications, the authors state that their results are consistent with the results of recent

comparative studies.

E1.1. Page 19 / 34

The limitations of this profiler are the following: Monitors the phone battery consumption as a whole,

relies on battery and hardware information provided by Batterystats hence, it is not in real time and

not fine grained. Also, the values provided are estimations based on the metrics they applied which

means that battery estimations are based on battery drain and the energy consumption of the

individual components are not mapped.

3.2.7 ReviewViz: Assisting Developers Perform Empirical Study on Energy Consumption
Related Reviews for Mobile Applications

The study [7] deals with the development of a visualisation tool to help developers better sift through

the user reviews of their apps. This tool specifically deals with the topic of energy consumption and

tests various machine learning models with the intent of choosing the best one for natural language

assessment of the topic at hand.

The results from the study show that the CNN-FT, a type of Convolutional Neural Network with the

added capability of fault tolerance, is the model that attains the best accuracy and F1-score values

(approximately 0.94 for accuracy and 0.935 for F1-score as it is shown below) relinquishing however,

the run-time, taking approximately 35 to 40 minutes to complete.

E1.1. Page 20 / 34

Although the purpose of this study is the development of a data visualisation tool, it shows the

possibility of using machine learning and user reviews to gather information about energy

consumption, proving itself useful for the project.

3.3 Conclusion

The research performed found no machine learning solution to study the correlation between energy

consumption and the data readily available about an application in its appstore page. Despite this, all

the tools and knowledge deemed necessary for the development of said solution exist and are publicly

available. In respect to energy efficiency analysis of mobile applications in centralised and

decentralised cloud architectures however, several studies were found that apply some form of

energy analysis in order to improve their efficiency, both in terms of resource usage and time spent

as well as energy consumption, for either the mobile device or the cloud network with a preference

for decentralized cloud structures in order to improve energy efficiency as seen with the articles

[10],[11],[12] and [13].

E1.1. Page 21 / 34

[1] Raja Wasim Ahmad et al. “A Review on mobile application energy profiling: Taxonomy, state-of-

the-art, and open research issues”. In: Journal of Network and Computer Applications 58 (2015), pp.

42–59.

[2] Abdullah Mahmoud Almasri. “Google Play Apps ERM: (Energy Rating Model) Multi-Criteria

Evaluation Model to Generate Tentative Energy Ratings for Google Play Store Apps”. PhD thesis. 2021.

url: http://hdl.handle.net/10284/9671.

[3] Fares Bouaffar, Olivier Le Goaer, and Adel Noureddine. “PowDroid: Energy Profiling of Android

Applications”. In: 2021 36th IEEE/ACM International Conference on Automated Software Engineering

Workshops (ASEW). IEEE, 2021, pp. 251–254.

[4] Borle S. Romansky S. Chowdhury S. and A. Hindle. “GreenScaler: training software energy models

with automatic test generation”. In: Empirical Software Engineering 24 (2018), pp. 1649–1692.

[5] Luis Cruz and Rui Abreu. “EMaaS: Energy Measurements as a Service for Mobile Applications”. In:

2019 IEEE/ACM 41st International Conference on Software Engineering: New Ideas and Emerging

Results (ICSE-NIER). IEEE, 2019, pp. 101–104.

[6] Dario Di Nucci et al. “Software-based energy profiling of Android apps: Simple, efficient and

reliable?” In: 2017 IEEE 24th International Conference on Software Analysis, Evolution and

Reengineering (SANER). IEEE, 2017, pp. 103–114.

[7] Mohammad Abdul Hadi and Fatemeh Hendijani Fard. “ReviewViz: Assisting Developers Perform

Empirical Study on Energy Consumption Related Reviews for Mobile Applications”. In: Proceedings of

the IEEE/ACM 7th International Conference on Mobile Software Engineering and Systems. ACM, 2020,

pp. 27–30.

[8] Mohammad Ashraful Hoque et al. “Modeling, Profiling, and Debugging the Energy Consumption of

Mobile Devices”. In: ACM Comput. Surv. 48.3 (2015), pp. 1–40.

[9] Pijush Kanti Dutta Pramanik et al. “Power Consumption Analysis, Measurement, Management, and

Issues: A State-of-the-Art Review of Smartphone Battery and Energy Usage”. In IEEE Access 7 (2019),

pp. 182113–182172.

[10] Y. Zhang, J. He and S. Guo, "Energy-Efficient Dynamic Task Offloading for Energy Harvesting

Mobile Cloud Computing," 2018 IEEE International Conference on Networking, Architecture and

Storage (NAS), 2018, pp. 1-4.

[11] E. Ahvar, A. -C. Orgerie and A. Lebre, "Estimating Energy Consumption of Cloud, Fog, and Edge

Computing Infrastructures," in IEEE Transactions on Sustainable Computing, vol. 7, no. 2, 1 April-June

2022, pp. 277-288.

[12] C. Anuradha, M. Ponnavaikko, “A RNN based offloading scheme to reduce latency and preserve

energy using RNNBOS”, in Measurement: Sensors, Vol. 24, 2022, 100429.

[13] Khadija Akherfi, Micheal Gerndt, Hamid Harroud, “Mobile cloud computing for computation

offloading: Issues and challenges”, in Applied Computing and Informatics, Volume 14, Issue 1, 2018,

Pages 1-16.

E1.1. Page 22 / 34

4 Requirements of the data analysis, acquisition, and processing
system

Develop a system for classifying the energy consumption of applications submitted to the Aptoide

app store.

According to the methodology proposed in this project, this task is divided into five parts:

requirements elicitation, functional requirements, business objectives, technical restrictions and

quality restrictions, detailed right away.

4.1 Requirements Elicitation

- Requirements elicitation was carried out through a meeting between Caixa Mágica Software

teams and members of the University of Coimbra on August 2, 2022.

4.2 Functional Requirements (FR)

4.2.1 FR01 - Provide the dispatcher with a way to invoke the energy certification service and
obtain the result of the certifications carried out;

4.2.2 FR02 - Allow adding and removing certification techniques;

4.2.3 FR03 - Configure the output format and select the algorithm responsible for
certification;

4.2.4 FR04 - Run functional assessment and results in correction tests;

4.2.5 FR05 - Allow parameterization of algorithms;

4.2.6 FR06 - Allow the Judge to obtain information about the certification;

4.2.7 FR07 - Delete previous results of energy assessments;

4.2.8 FR08 - Activate and deactivate the energy evaluation;

4.2.9 FR09 - Suggest improvements in the application code to allow improving the
performance of energy consumption;

4.2.10 FR10 - Search and obtain information about certifications already carried out.

4.3 Business Objective

Allow the app store to make an option that competitors do not have available to its

customers.

E1.1. Page 23 / 34

4.4 Technical Restrictions (TR)

4.4.1 TR01 - Be deployable with resources to containers in cloud environments.

4.4.2 TR02 - Snap to the current pipeline.

4.4.3 TR03 - Interact through web services with the components: dispatcher and Judge.

4.5 Quality Attributes (QA)

4.5.1 QA01 - When the system receives a new application, check if the apk has the
requirements for analysing energy consumption.

4.5.2 QA02 - Allow deploying or updating without downtime.

4.5.3 QA03 - Dispatcher receive apk. When a new application is loaded in the app store, the
apk and application information are passed to the energy analysis tool.

4.5.4 QA04 - Analyse apk energy consumption during the pipeline without interfering with
critical pipeline flow.

4.5.5 QA05 - Prevent unauthenticated access to the system.

4.5.6 QA06 - The data considered for energy certifications must be saved and later made
available.

4.5.7 QA07 - Availability?

4.5.8 QA08 - Recovery in case of error?

4.5.9 QA09 - Duration/historical amount to keep?

4.5.10 QA10 - Performance?

E1.1. Page 24 / 34

5 Requirements for machine learning and profiling mechanisms for
app energy consumption patterns, and recommendation systems
for stakeholders

For designing an ML-based recommender systems (MLRS), the team has provided a set of

requirements to design a proper MLRS to decrease energy consumption. In the following, we listed

the main requirements.

● Providing a method to consume the energy consumption for each function in each application.

It should be automatic since, to gather an adequate volume of data, manual methods are

insufficient.

● Extracting the affecting factors in energy consumption for a specific task. By doing this, the

factors can be seen as a proxy of energy consumption, and as a result, they can be used

interchangeably for energy consumption.

● An MLRS should be designed for a specific task. Therefore, it is important to identify the

Energy-intensive components. Therefore, the focus should be on one of them.

● A large volume of data should be available to design an MLRS. Data should be extracted for a

specific MLRS.

● There are several approaches to designing and implementing MLRS from deep learning

methods to evolutionary computation. It is taken into consideration as one of the main

requirements since the selection is based on data availability and their type.

● The amount of data should be enough to extract the proper models.

● To provide a specific MَLRS, there must be appropriate data for it, including some features to

describe the task as well as energy consumption (or a proxy or/and affecting factors).

In the following, we have reviewed the profiling mechanisms for energy consumption as well as

recommendation systems for stakeholders.

From the literature, there is no AI-based-recommender system for stakeholders with the goal of

energy consumption. The main problem in this area seems to be that there is no available proper data

for this purpose. However, several studies have recommended hints and suggestions to diminish

energy in smartphones and tablets. All of these studies are based on some quantitative and statistical

analysis. To this end, they took two different conditions and tried to assess their energy consumption.

In the following, the main contributions in this area to provide some recommendations are

highlighted.

One of the early research studies on the scope of energy consumption is [1]. This paper is one of the

most important research on practice coding for Android Apps to decrease energy consumption. It

divides energy-saving best practices into three different categories, including, energy of networks,

save-memory energy, and the programming tips to improve runtime performance. Among all best

practices, they selected three as the representatives as follows:

E1.1. Page 25 / 34

1) HTTP request:

they measured the energy consumption of downloading different sized data files using HTTP

request. Figure 1 shows the trend for energy consumption in terms of the different sized data

files. The x-axis shows the number of bytes, downloaded by the request, while y-axes is the

energy consumption in terms of mAh.

From the figure, the energy consumption of an HTTP request stays in the range of 0.5-0.6 mAh

when the downloaded data is less than 1,024 bytes (1,000 on the x-axis in Figure 1). When the

data size becomes larger, the energy consumption of the HTTP GET request has a roughly

linear relationship with the size of downloaded data.

This observed trend is caused by the fixed overhead introduced by the packet header and

control information in the HTTP protocol and its lower level network protocols, TCP and IP.

Regardless of the size of the sent data, the packet header's size remains fixed. Instead of the

packet size, the amount of the control information is mostly determined by the quantity of

packets. Therefore, when the packet size is small, the majority of energy is used to send packet

headers and control information. The scenario changes as the data size takes control as the

volume of data rises. When examining network throughput, this inefficiency of transmitting

little packets is also shown.

Therefore, the authors suggested some recommendations as follows:

Developers should refrain from making short HTTP queries and should consider whether

bundling small HTTP requests may save energy. Developers should refrain from requesting

small amounts of data from distant databases, especially for some RESTful apps. If numerous

short HTTP requests must be made, developers should aim to optimize their apps or protocols

to combine these into a single, more energy-efficient request.

Figure 1. Energy consumption of downloading the different sized data files [1].

E1.1. Page 26 / 34

2) Use of memory:

The average energy consumption of accessing different heap-based objects that represent

different levels of memory usage is measured to create other recommendations basd on the

use of memory. Figure 2 shows the result. X-axis indicates array length. From the figure, we

can conclude that the average energy consumption per access to an array cell is raised by

increasing the size of memory usage. However, this increase is modest.

The findings of the experiment suggest that although memory is not free and programmers

should refrain from allocating superfluous memory, they are not as expensive as previously

believed.

The average energy used for each access is very slightly increased as memory utilization

grows. This outcome can influence development practices by motivating programmers to

allocate additional memory if doing so could help other components use less energy. For

instance, programmers may assign more cache space to limit network access.

Figure 2. Energy consumption at different levels of memory usage [1].

3) Performance tips:

They compared the energy consumption of code that was and was not implemented using

best practices oriented towards runtime performance. In particular, they considered three

practices as : (1) avoiding access to the length property of an array in the loop's body, (2) going

straight to the field instead of utilizing getters and setters, and (3) using static rather than

virtual invocations. For each of these practices, they compared the energy usage of the

programs after implementing code that either followed or did not follow the

recommendation.

E1.1. Page 27 / 34

From the results, they suggested three recommendations for energy saving as follows.

1) This implies to developers that decreasing the energy consumption of loops may be

accomplished by initializing a variable with the length only once and utilizing that as

a constant.

2) If developers want to conserve energy, they should access object fields directly rather

than through a method.

3) This finding suggests that static invocation is more effective with Android. This is most

likely caused by the additional search costs associated with invoking virtual methods.

Even while utilizing static methods exclusively is not a smart programming practice,

developers should take this into account when trying to conserve energy in code parts

that regularly use other

Figure 3. Energy consumption of the performance oriented best practices. [1].

In other research[2], the authors consider the impact of two best practices in terms of energy

consumption, including, the use of appropriate syntax and avoiding getters/setters. To analyse the

impact of each best practice, the code without the practice is executed to obtain its evaluation results.

After that, this code is modified by applying the practice , and its evaluation is performed.

1) In the first experiment, they calculated the energy consumption of different variants of a loop. To

have a better understanding, the source codes for the same operation are given in Figure 4. It can be

seen that the authors tried to write a function in 3 ways and consume the energy consumption of each

E1.1. Page 28 / 34

code, separately. The results can be seen in Figure 5. It clearly shows that the way of writing a loop in

Android can be effective in energy consumption.

2) In the next experiment, the impact of avoiding getters/setters methods is evaluated. From the

experiments, provide in Figure 6, they conclude that, as a recommendation, developing a method

without a getter can save energy.

Figure 4-experimental codes for the for practice [2]

Figure 5-Energy consumption or the results of the for practice [2]

Figure 6- results of avoiding getter and setter methods [2]

E1.1. Page 29 / 34

[3] shows the best practices for energy consumption in several categories. The patterns the

authors listed is independent of the development environment. In other words, they can be

used on both iOS and Android. These patterns can be used as recommendations to developers

with the goal of decreasing the energy consumption.

● Dark UI Colors

 A dark UI color theme can save battery life on devices[4].

● Dynamic Retry Delay

Some functionalities of the mobile application necessitate gathering information from

external sources (e.g., update information from a server). However, under the same

situations, if the resource is not accessible, the app will pointlessly attempt to connect to the

resource many times, wasting power. Therefore, the developers should increasee the time

elapsed between attempts to access the same resource after each unsuccessful one to save

energy [3].

● Avoid Extraneous Work

Mobile applications must handle several tasks at once. There are situations where the

outcome of those activities is not immediately apparent (for instance, when the user interface

is displaying other pieces of information) or where the outcome is not always pertinent to the

user. This is especially important when using background-running programs. The phone is

wasting resources since the data is far out of date. Therefore, the developers should avoid

doing activities that are not obvious to the user, provide little value, or will soon become

outdated [3].

● Race-to-idle

Numerous resources used by mobile apps can be explicitly closed after use. These resources

demand additional power consumption while they are active since they are prepared to

respond to requests from the app. Therefore, developers, as quickly as they can, should make

resources or services available (e.g., wakelocks, screen)[5].

● Open Only When Necessary

Some resources must first be opened in order to be used. It could be tempting to access the

essential tools as soon as a work is started (like when an activity is created). Resources,

however, will be actively awaiting requests that use energy. Therefore, developers should only

launch resources or services when absolutely essential[6].

● Push Over Poll

E1.1. Page 30 / 34

Resources must provide updates for mobile applications (e.g., from a server). Regularly

querying such resources is one approach to look for updates. However, this will result in several

queries that won't return any updates, wasting energy. The recommendation here is, instead

of actively searching for resources, to use push notifications to get updates from those

resources (i.e., polling)[3].

● Power saving mode

Users want to prevent losing data if the device's battery is low. Before they arrive at a power

station, they have connectivity. Users who allow the gadget to shut off risk missing crucial

calls or being unable to complete crucial tasks. However, in this crucial situation, apps can do

meaningless functions that drain the battery. To this end, the recommendation is that the

program offers a power saving mode in which it utilizes fewer resources while still offering

the user's essential minimal functionality. It may be turned on manually or when certain

power events occur (e.g., when the battery reaches a given level)[3].

● Power Awareness

There are several features that, while they enhance the user experience, are not necessarily

required for users (e.g., UI animations). Additionally, certain tasks do not require rapid

execution and may not have a high priority, such as backing up data to the cloud. The

suggestion is to, depending to the power state, enable or deactivate certain functions or tasks.

It's possible that the battery is going low even while the device is connected to power, thus it

could be best to wait until a certain battery level is achieved (or the power save mode is

deactivated)[7].

● Reduce Size

 In mobile apps, data transfer is a typical process. Such activities, however, are energy hogs,

and it is best to cut the transmission time as much as feasible. Sending superfluous data should

be avoided, only exchange what is absolutely essential. When it is possible, use data

compression[8].

● WiFi over Cellular

Cellular network data connections typically consume more battery power than WiFi ones. Low

priority tasks that involve exchanging large quantities of data through a data connection

should be postponed until a WiFi connection is available [9].

● Suppress Logs

Developer should avoid intensive logging since it has been revealed that logging activities at

rates above energy efficiency are considerably reduced by one message per second [10].

● Batch Operations

E1.1. Page 31 / 34

Tail energy consumption associated with beginning and stopping resources is frequently

caused by performing an activity. Therefore, the recommendation is to batch multiple

operations, instead of putting the device into an active state many times [1].

● Decrease rate

Mobile applications must run operations on a regular basis. The program will execute actions

more frequently if there is little delay between two executions. In some circumstances, even

if procedures are carried out more often, consumers' perceptions will not change. Therefore,

developers should find the shortest time between operations that does not degrade the user

experience by increasing the delay between operations. Developers can manually adjust this

delay, or consumers can specify it [3].

● User Knows Best

Solutions for energy efficiency frequently offer a trade-off between features and power usage.

The tradeoff varies depending on the user; some may be OK with less functionality but greater

energy efficiency, and vice versa.

Therefore, it is recommended to allow people to personalize their selections for features that

save energy. Mobile apps should offer the best options by default for ordinary users as this

may be more natural for power users [3].

● Enough resolution

High resolutions are alluring while gathering or showing data. The issue with employing high-

resolution data is that doing so requires more resources for gathering and manipulation (e.g.,

memory, processing capacity, etc.). As a result, unnecessary energy use rises[3].

● Sensor fusion

Mobile apps offer features that need reading data or executing operations on variou sensors

. Such procedures may be energy hogs that use a lot of electricity. Therefore, they ought to

be named as seldom as possible. It is recommended to utilize supplemental information from

low-power sensors to determine if a specific energy-hungry operation has to be carried out

[11].

● Kill Abnormal Tasks

There may be activities in mobile apps that are surprisingly energy hogs (e.g., taking a long

time to execute). The developers should give energy-hungry tasks or wake locks an

appropriate timeout [3].

● No screen intraction

There are certain apps that need constant screen use. There are applications, nevertheless,

where a less energy-intensive screen can be used instead. To this end, developers should

allow users to utilize alternate interfaces to engage with the app (e.g., audio) [3].

E1.1. Page 32 / 34

● Avoid using unnecessary animations and graphics

Mobile apps frequently include eye-catching animations and visuals. To avoid draining the

users' devices' batteries, they must be appropriately calibrated. Therefpre, the developers

should look into how important graphics and animations are to the user experience, and they

avoid using graphics animations or high-quality graphics. If possible, resort to low frame rates

for animations [3].

[1] Li, Ding and Halfond, William GJ, An investigation into energy-saving programming practices for

android smartphone app development, Proceedings of the 3rd International Workshop on Green

and Sustainable Software, P. 46-53, 2014

[2] S. Mundody and K. Sudarshan, “Evaluating the impact of android best practices on energy

consumption,” in IJCA Proceedings on International Conference on Information and Communication

Technologies, vol. 8, pp. 1–4, 2014.

[3] L. Cruz and R. Abreu, “Catalog of energy patterns for mobile applications,” Empirical Software

Engineering, vol. 24, no. 4, pp. 2209–2235, 2019.

[4] Agolli T, Pollock L, Clause J, Investigating decreasing energy usage in mobile apps via

indistinguishable color changes. In: 2017 IEEE/ACM 4th international conference on mobile software

engineering and systems (MOBILESoft). IEEE, pp 30–34, 2017

[5] Liu Y, Xu C, Cheung S-C, Terragni V , Understanding and detecting wake lock misuses for android

applications. In: Proceedings of the 2016 24th ACM SIGSOFT international symposium on

foundations of software engineering (FSE). ACM, pp 396–409, 2016

[6] Banerjee A, Roychoudhury A , Automated re-factoring of android apps to enhance energy-

efficiency. In: Proceedings of the international workshop on mobile software engineering and

systems. ACM, pp 139–150, 2016

[7] Bao L, Lo D, Xia X, Wang X, Tian C, How android app developers manage power consumption?:

an empirical study by mining power management commits. In: Proceedings of the 13th international

conference on mining software repositories. ACM, pp 37–48, 2016

E1.1. Page 33 / 34

[8] Boonkrong S, Dinh PC, Reducing battery consumption of data polling and pushing techniques on

android using gzip. In: 2015 7th international conference on information technology and electrical

engineering (ICITEE). IEEE, pp 565–570, 2015

[9] Metri G, Agrawal A, Peri R, Shi W , What is eating up battery life on my smartphone: a case study.

In: 2012 international conference on energy aware computing. IEEE, pp 1–6, 2012

[10] Chowdhury S, Di Nardo S, Hindle A, Jiang ZMJ , An exploratory study on assessing the energy

impact of logging on android applications. Empir Softw Eng 23(3):1422–1456, 2018

[11] Shafer I, Chang ML, Movement detection for power-efficient smartphone wlan localization. In:

Proceedings of the 13th ACM international conference on modeling, analysis, and simulation of

wireless and mobile systems. ACM, pp 81–90, 2010

[12] Kim D, Jung N, Chon Y, Cha H, Content-centric energy management of mobile displays. IEEE

Trans Mob Comput 15(8):1925–1938, 2016

E1.1. Page 34 / 34

6 Requirements for decision support and management interface,
and recommendation channels

Based on analysis and brainstorming sessions and interviews with relevant stakeholders (notably

Aptoide), the team has eased a set of requirements for the Greenstamp system interface, which takes

into account various perspectives and views:

From the users' point of view:

● Promote the energetic labelling of apps when they are developed;

● Calculation of consumption estimates throughout use;

● Confirmation of energy labelling (user feedback in app store);

● Warning (notification) when an application consumes a lot of power;

● Differentiate between "families" of apps (a social network has a different cost than an alarm)

● Analysis by functionality and not by consumption measurement (have consumption

measurements tabled by functionality, GPS type, etc.);

From the app store's point of view:

● Show information about the type of applications the user has installed;

● Taking into account the list of installed apps, make an estimate of the total consumption;

● Focus application analytics on main business: Games

From the developers' point of view:

● Classification of application development frameworks ;

● Merit classification of software houses;

● Historical Performance Developer:

https://developer.android.com/topic/performance/power/setup-battery-historian

● Make available in the IDE a tool that makes an analysis of inefficient code patterns, suggesting

solutions;

● Gamification of the provision of developers;

● Datasets with app characteristics and permissions ==> App Consumption Estimation

From the market's point of view:

● Opening a potential new business area: Energy certification of apps.

https://developer.android.com/topic/performance/power/setup-battery-historian

