Ranking Mobile Applications by Energy Efficiency

Jodo Rocha
dept. name of organization (of Aff.)
name of organization (of Aff.)
City, Country
up201806261 @edu.up.pt

4™ Given Name Surname
dept. name of organization (of Aff.)
name of organization (of Aff.)
City, Country
email address or ORCID

Abstract—In recent years, technological advancements have
enabled the development of intelligent mobile phones, also known
as smartphones, and their applications (apps) that help complete
everyday tasks in a simple, fast, and mobile manner.

According to statistics, it is estimated that 6.92 billion smart-
phones are being used across the World, and this number is
expected to grow to 7.33 billion by 2025. The average user has
35 apps installed on his smartphone.

The enormous number of mobile applications being run raises
concerns about the management of the batteries of mobile
devices. Batteries have limited power, so they must be used
efficiently to make them last longer without charging. Another
issue is the negative environmental impact due to the amount of
energy running these apps uses. Consequently, it is necessary to
consider Energy Efficiency in mobile application development to
minimise this impact.

The leading app stores do not provide information about
the energy efficiency of the applications they distribute. With
this, discussions about what we can do to alert developers and
companies to be more cautious about the energy efficiency of
their products arise.

We searched for related literature, analysed the approaches
found to address the lack of energy labels and agreed that they
could be improved.

This work focuses on designing and developing a framework
that analyses Android applications and labels them based on
their energy efficiency. The resulting labels from this project
are obtained by combining the analysis of different anti-pattern
detection tools that complement each other.

We believe that providing these energy labels can serve as
an incentive for developers to be more energy efficiency aware
of their applications, as well as help users choose more energy-
efficient applications.

Index Terms—energy labelling, energy efficiency, mobile ap-
plications, apps

I. INTRODUCTION

In today’s world, we use smartphones regularly in our
everyday lives. We use these devices to keep track of the time,
stay up to date with our friends and family, have fun while
playing games and much more.

In 2023 the number of smartphones worldwide has in-
creased to 6.92 billion, which is expected to grow to 7.33

2" Given Name Surname
dept. name of organization (of Aff.)
name of organization (of Aff.)
City, Country
email address or ORCID

5 Given Name Surname
dept. name of organization (of Aff.)
name of organization (of Aff.)
City, Country
email address or ORCID

3" Given Name Surname
dept. name of organization (of Aff.)
name of organization (of Aff.)
City, Country
email address or ORCID

6™ Given Name Surname
dept. name of organization (of Aff.)
name of organization (of Aff.)
City, Country
email address or ORCID

billion by 2025. This means that around 86.41% of all people
nowadays have access to a smartphone. And these numbers
are not expected to slow down any time soon.

Each smartphone is packed with a lot of apps with different
functionalities. The mobile app industry has a vast market and
is thriving. Mobile apps are expected to generate over $935
billion in revenue in 2023. When we look at the statistics about
app usage, we can see that 49% of people open an app 11+
times per day and that 21% of Millennials do it 50+ times
daily. The average user uses ten apps daily and has around 35
apps installed on their device.

The conventional distribution channels for mobile applica-
tions are App stores. The most famous ones are Google Play
Store, developed by Google and Apple App Store, made by
Apple. Another app store is Aptoide, created in Portugal and
the focal distribution store referenced in this report. In 2023,
2.87 million and 1.96 million apps are available for download
and installation in these App stores.

Both Apple App Store and Google Play Store do a similar
job but are used in different operational systems (OS). While
Apple App Store is only used on iOS devices (also developed
by Apple), Google Play Store has a significant market share
of Android devices. The market share of Mobile Operating
Systems has two leading contenders. Android has 71.8% of
the market share, while iOS has 27.6%.

With the abundance of smartphones worldwide using all
kinds of mobile apps and using a sizable amount of energy,
we need to start thinking about Energy Efficiency in this
context [8], [11].

Mobile applications are becoming more complex and de-
manding more computational power than ever. Although we
see development in software and hardware, batteries are not
evolving at the same pace. If apps are not energy efficient,
they contribute to increased energy consumption, thereby
adversely impacting the global environment. These apps will
also consume users’ smartphone batteries faster than usual.

Previous studies have reported that many pages in app
stores have comments referencing apps’ energy efficiency [12].

However, no mobile application store provides information
about the energy efficiency of an app.

Researchers have pursued various approaches to address en-
ergy efficiency in mobile app development. One such method
involves the creation of guidelines and code refactors aimed
at enhancing battery consumption [2]-[7].

II. BACKGROUND
A. Previous Solutions

Some of the solutions proposed in other research papers
take advantage of an energy profiler to directly measure or ap-
proximate the energy usage of a mobile application. Although
these solutions can have good results, they are not scalable
and need different test cases to analyse different applications.
Other proposed solutions are based on anti-pattern detection
and resource leaks but only use a few tools in the analysis or
just compare apps with similar functionality.

III. ANALYSIS AND LABELLING TOOL

The solution proposed in this paper can be divided into
three different and separate steps: Decompilation, Analysis
and Classification. Figure 1 represents the architecture of the
developed project.

Earmo
Kadabra
Permissions
aDoctor

Input @ Decompile \nput
Jaax Android Files

IDROE Paprika
Relda2

Apk Lint
EcoAndroid

Btract Q

Json

Classif %

Label

Analysis Tools

Decompilation Analysis Classification

Fig. 1. Architecture Diagram

The following sections will describe in more detail each one
of the steps.

A. Decompilation

This is the first step and where all the inputs for the analysis
tools come from. While some tools only require the Android
Package file (APK), others require the source code to work.
To get the source code from the APK file, we need to run an
Android decompiler, and for that purpose, Jadx was chosen.
There are several decompilers, such as Dex2Jar, but Jadx has
better documentation, and the decompilation results were more
appropriate to the kind of inputs the analysis tools needed.

B. Analysis

The Analysis is the second and the most time-consuming
step. Here is where the app will be analysed. This solution
has the following analysis tools integrated:

Although these are implemented, we can easily add more
analysis tools to this pool.

Tools

EARMO

Kadabra

Permissions Analyzer
aDoctor

Paprika

Relda2

Android Lint

TABLE I
ANALYSIS TOOLS

This stage results in a JSON file with the number of
detections and time of execution of each tool. This file also
contains information about the app, such as the name, size,
number of Java files, and categories.

C. Classification

This is the final step, but where the final label will come
from.

Firstly, thresholds for each analysis tool are calculated after
analysing a dataset of different apps. These thresholds are
also calculated for each category to compare each category
differently.

After calculating the thresholds, we compute a classification
per tool for each mobile application. Then, we calculate the
mean value of these classifications to get a single classification
from 1 to 5 for each app. Lastly, we calculate new thresholds
based only on the last values but this time not considering the
apps’ categories.

At this point, we will have thresholds for classifications
from 1 to 7. The last step is to convert these numbers into
labels.

D. Requirements and How to Run

To run the analysis and labelling tool, there are a few
requirements:

Python 3.10 or above
Java 20.0.1 or above
Python Packages
Polars

Json

Multiprocessing
Tools

Jadx - Version 1.4.7
Kadabra - Build 20230210-1521
aDoctor

Paprika

Relda2

Android Lint

TABLE I
PROGRAM REQUIREMENTS

This is the command to run the tool:

python main.py [-h] -categories
CATEGORIES [CATEGORIES ...]
[-analyzers [ANALYZERS ...]]
[-force]

[-fdroid FDROIDPACKAGENAME]
ApkPath

The following list shows and explains the mandatory and
optional program arguments:

o ApkPath — The path to the APK file of the app to be
analyzed. (Mandatory)

o -categories / -c — A list with the names of the categories
of the app. (Mandatory)

o -analyzers / -a — A list with the names of the analyzers to
run. Default: Earmo Kadabra AndroidManifestAnalyzer
Lint ADoctor Paprika Relda2. (Optional)

o -force / -f — A flag that, if present, will force the execution
of all or some analyzers discarding previously saved
values. (Optional)

o -fdroid — The package name of an app from F-Droid. The
program will try to download the app from F-Droid if a
package name is given. (Optional)

o -aptoide — The package name of an app from Aptoide.
The program will try downloading the app from Aptoide
if a package name is given. (Optional)

The following code shows an example of how to run the
tool:

python main.py —-c Test Example example.

With these arguments, the tool will execute all analysis tools
if there are no saved previous results and associate the app
with the Test and Example categories. All analysis tools
classifications and the final label will be calculated based on
these categories and others that previously could have been
associated with the app.

E. Further Details

The developed program can easily be modified to add or
change any analysis tools with minor changes. Since the be-
ginning of the development of the project, a possible modular
solution was always in mind to ease future changes.

Another important detail is that we can use any category.
This means that the categories used in this dissertation can be
changed into any set of categories. But it is not restricted to a
category. A company can, for example, create a new category
with the name of the company to track and compare all its
Android applications by their energy efficiency.

After the analysis and label computation, the program cleans
all the directories used from useless post-analysis files. The
only files that are not deleted are the log files, a text report
and a JSON file with the results. The number of detections
from each tool and the respective classifications are contained
in this JSON file along with other stats.

If the -fdroid or the -aptoide argument is set, the program
will try to download the app with the given package name from
the respective distributor. If it is successful, it will analyze and
label it and then delete the app from the system.

All the code developed in this project is available
on Github: https://github.com/JayRx/Labelling-Android-Apps-
by-Energy-Efficiency.

IV. DATASET

The dataset used to compute and calibrate the values of the
labels was composed of several Android applications taken
from F-Droid, a catalogue of free and open-source apps.

The apps were selected randomly and have various sizes,
numbers of files and uses. To achieve this, a Python script
was developed to Web scrape the F-Droid website and get all
the apps in its database with the respective categories.

Then, a new Python script was made to select 50 mobile
applications of each category randomly. The output of this
code is a JSON file per category with the package names of
the selected apps.

As shown in Figure 2, the dataset used has diverse kinds
and sizes of apps represented, which can positively affect the
results of the thresholds and labels when analysing apps in
scenarios outside of testing. Figure 3 displays the number of
Android applications from each category. As we can see, the
lowest number of apps from the dataset in a category is 43.

Dataset Information

at

Fig. 2. Dataset Information

As shown in Figure 4, we calculated the Spearman rank
correlation coefficients between some of the dataset character-
istics. With the results we got, we noticed a strong correlation
between the time of the analysis and the size of Java files of
an app. This way, we can approximate the time an application
is going to take to be analysed.

Each app can have one or more categories. In theory, any
category name can be used in the app, but to calibrate and
test the developed model, we split the dataset apps into 17
separate categories. We did not make these categories. We
took advantage of the ones already created by F-Droid.

The categories are the following:

V. LABEL CALIBRATION

To correctly calculate thresholds to help us decide which
label to attribute to each application, we calculated separate

Category

Connectivity

Development

Games

Graphics

Internet

Multimedia

Security

Navigation

Phone and SMS

Reading

Science and Education

Witing

Sports and Health

System

Theming

o

20 30
Number of Apps

Fig. 3. Number of Apps per Category in the Dataset

Files Size Time

FilesSize

Fig. 4. Correlation Matrix between some characteristics of the dataset

FilesSize

Size Files

- 1.00

- 095

0.90

0.85

0.80

075

070

065

0.60

0.55

Category Name

Connectivity Development Games
Graphics Internet Money
Multimedia Navigation Phone and SMS
Reading Science and Education | Security
Sports and Health | System Theming
Time Writing
TABLE III
CATEGORIES

thresholds for each category and each analysis tool. This is
because apps in different categories and with other purposes
will need less or more energy. For example, a game will be
more computationally expensive than a note-taking app. Thus
we need to classify them differently.

We split the results file into separate datasets by category to
achieve this. Then, for each of these, calculated the thresholds
of 5 different classification levels for each tool depending on
the number of detections. These levels are also characterized
by a number of stars, being five stars the best level and one
star the worst one.

To calculate the different thresholds, we followed a method
based on making a density function based on weights [1].

VI. RESULTS

Each Android application from the 738 different apps in the
dataset was labelled following the previously described pro-
cess. Figure 5 illustrates that the labels obtained are distributed
across all energy labels. The dataset has many more apps with
fewer anti-pattern detections, and bigger apps generally have
more detections. This makes the labelling results of the dataset
more skewed to the labels A and B. Table ?? shows the final
classification and respective label of each mobile application
in the dataset.

.l

Fig. 5. Final Label Results

We compared the results from six different apps when
running our labelling tool with Trepn [9] and EcoDroid to
validate our classification and labelling method. Trepn is an
energy profiler that measures the actual energy consumption
of apps. The results of both Trepn and EcoDroid come from
EcoDroid’s scientific article [10]. Figure 7 illustrates that
comparison and, as we can see, the results are very similar.
The metric in the figure is a relative classification between the
results of the six apps. Equation 1 shows how these values are
calculated.

Classi ficati
RelativeClassi fication(a) = M@i;i;({;? fijiZlE?o)n)

We calculated the Spearman rank correlation coefficients
using these values, which showed a 0.75 correlation between
our and Trep results. This means that there is some correlation
between the two values.

ecodroid frepn

greenalize

trepn ecodioid greenalize

Fig. 6. Correlation Matrix between results

Relative Classification
Relative Classification

1.0
08
06
04
02

I I I l D

00 0

& TS
S & & <& & &

& & N &

5 S Q& & 3
& & ¢ R
& & &

&

o
& &

App App

Relative Classification

Fig. 7. Trepn, EcoDroid and Developed Tool Results Comparison

VII. CONCLUSION

As we have seen, there are billions of smartphones, each
having, on average, 35 apps. With this, we must start thinking
about energy efficiency applied to mobile applications. More
efficient applications can bring advantages to users and the
World. Since there is currently no app store showing informa-
tion about apps’ energy efficiency, this report contributes with
a labelling solution to solve this problem.

To have a starting point, some initial research was done in
which many solutions and tools were found. These solutions
had different problems and some improvements that could be
implemented. After this essential step, a solution was proposed

using the tools researched that combats all limitations found
in previous works.

The results obtained from this labelling method were good.
The apps were compared with the data from different tools to
get multiple points of view. The threshold calculation shows
how comparing different apps regarding their types is possible.
This way, apps that require more computational power and
consume more power are not affected by their category, and
we will have a more fair overall ranking.

ACKNOWLEDGMENT

This project was financed by FEDER (Fundo Europeu
de Desenvolvimento Regional), from the European Union
through CENTRO 2020 (Programa Operacional Regional do
Centro), under project CENTRO-01-0247-FEDER-047256 —
GreenStamp: Mobile Energy Efficiency Services.

REFERENCES

[1] Tiago L. Alves, Christiaan Ypma, and Joost Visser. Deriving metric
thresholds from benchmark data. In 2010 IEEE International Conference
on Software Maintenance, pages 1-10, 2010.

[2] Abhijeet Banerjee, Lee Kee Chong, Clément Ballabriga, and Abhik
Roychoudhury. Energypatch: Repairing resource leaks to improve
energy-efficiency of android apps. IEEE Transactions on Software
Engineering, 44(5):470-490, 2018.

[3] Huagian Cai, Ying Zhang, Zhi Jin, Xuanzhe Liu, and Gang Huang.
Delaydroid: Reducing tail-time energy by refactoring android apps.
In Proceedings of the 7th Asia-Pacific Symposium on Internetware,
Internetware ’15, page 1-10, New York, NY, USA, 2015. Association
for Computing Machinery.

[4] Marco Couto, Jodo Saraiva, and Jodao Paulo Fernandes. Energy refac-
torings for android in the large and in the wild. In 2020 IEEE
27th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 217-228, 2020.

[5] Luis Miranda da Cruz. Tools and techniques for energy-efficient mobile
application development, 2019.

[6] Iffat Fatima, Hina Anwar, Dietmar Pfahl, and Usman Qamar. Detection
and correction of android-specific code smells and energy bugs: An
android lint extension, 2020.

[7] Daniel Feitosa, Luis Cruz, Rui Abreu, Jodo Paulo Fernandes, Marco
Couto, and Jodo Saraiva. Patterns and Energy Consumption: Design,
Implementation, Studies, and Stories, pages 89—121. Springer Interna-
tional Publishing, Cham, 2021.

[8] John Harris. Our phones and gadgets are now endangering the planet

— john harris, Jul 2018.

Qualcomm Technologies Incorporated. When mobile apps use too much

power a developer guide for android app performance, 2013.

Reyhaneh Jabbarvand, Alireza Sadeghi, Joshua Garcia, Sam Malek,

and Paul Ammann. Ecodroid: An approach for energy-based ranking

of android apps. pages 8-14. Institute of Electrical and Electronics

Engineers Inc., 7 2015.

Murray G Patterson. What is energy efficiency?: Concepts, indicators

and methodological issues. Energy Policy, 24(5):377-390, 1996.

Claas Wilke, Sebastian Richly, Sebastian Gotz, Christian Piechnick,

and Uwe ABmann. Energy consumption and efficiency in mobile

applications: A user feedback study. pages 134-141, 2013.

[9

—

[10]

(11]
[12]

